Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Methods Mol Biol ; 2710: 171-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688732

RESUMO

Spatial transcriptomics maps RNA molecules to the location in a tissue where they are expressed. Here we document the use of Slide-SeqV2 to visualize gene expression in the mouse olfactory bulb (OB). This approach relies on spatially identified beads to locate and quantify individual transcripts. The expression profiles associated with the beads are used to identify and localize individual cell types in an unbiased manner. We demonstrate the various cell types and subtypes with distinct spatial locations in the olfactory bulb that are identified using Slide-SeqV2.


Assuntos
Perfilação da Expressão Gênica , Bulbo Olfatório , Animais , Camundongos
3.
Cell Rep ; 36(10): 109674, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496236

RESUMO

Tumor-initiating stem cells (TSCs) are critical for drug resistance and immune escape. However, the mutual regulations between TSC and tumor microenvironment (TME) remain unclear. Using DNA-label retaining, single-cell RNA sequencing (scRNA-seq), and other approaches, we investigated intestinal adenoma in response to chemoradiotherapy (CRT), thus identifying therapy-resistant TSCs (TrTSCs). We find bidirectional crosstalk between TSCs and TME using CellPhoneDB analysis. An intriguing finding is that TSCs shape TME into a landscape that favors TSCs for immunosuppression and propagation. Using adenoma-organoid co-cultures, niche-cell depletion, and lineaging tracing, we characterize a functional role of cyclooxygenase-2 (Cox-2)-dependent signaling, predominantly occurring between tumor-associated monocytes and macrophages (TAMMs) and TrTSCs. We show that TAMMs promote TrTSC proliferation through prostaglandin E2 (PGE2)-PTGER4(EP4) signaling, which enhances ß-catenin activity via AKT phosphorylation. Thus, our study shows that the bidirectional crosstalk between TrTSC and TME results in a pro-tumorigenic and immunosuppressive contexture.


Assuntos
Carcinogênese/patologia , Forma Celular/fisiologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/fisiologia , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Intestinos/metabolismo , Camundongos , Organoides/metabolismo
4.
J Histotechnol ; 42(4): 193-201, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31416394

RESUMO

The BaseScope™ assay is a novel, highly sensitive RNA in situ hybridization (ISH) technique, allowing detection of short RNA sequences as well as discrimination between single-nucleotide alterations. Multiplexing BaseScope™ ISH with immunofluorescence assay has proven challenging because the diffusion of colorimetric dyes such as Fast Red in aqueous solutions degrades spatial resolution. In this study, we explore alkaline phosphatase-based fluorescent signal detection methods and integrate it with BaseScope™ RNA ISH. We found that Fast Blue BB/NAMP can be used in BaseScope™ ISH for signal detection. Additionally, we found that the calcium binding fluorochromes calcein and xylenol orange can be used to localize alkaline phosphatase activity in both immunohistochemistry (IHC) and BaseScope™ ISH assays. When applied to mouse brain and intestine tissue sections, we successfully detected circular RNA molecules and cell proliferation antigen Ki-67 proteins. This technological advance expanded the substrate selection of alkaline phosphatase-based BaseScope™ RNA ISH to allow researchers and clinical professionals accurately assess RNA targets with immunofluorescent multiplexing.


Assuntos
Fosfatase Alcalina/farmacologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , RNA/metabolismo , Fosfatase Alcalina/química , Animais , Colorimetria/métodos , Corantes Fluorescentes , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Hibridização in Situ Fluorescente/métodos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
5.
PLoS One ; 5(1): e8585, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20052281

RESUMO

BACKGROUND: The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY: To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS: We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE: Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.


Assuntos
Dictyostelium/enzimologia , Fagossomos/enzimologia , ATPases Vacuolares Próton-Translocadoras/isolamento & purificação , Actinas/metabolismo , Exocitose , Proteínas de Fluorescência Verde/genética , Microscopia Confocal , Microscopia de Fluorescência , Miosina Tipo I/metabolismo , Fagocitose , Transporte Proteico , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
Cell Adh Migr ; 3(4): 373-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19855162

RESUMO

Actin waves that travel on the planar membrane of a substrate-attached cell underscore the capability of the actin system to assemble into dynamic structures by the recruitment of proteins from the cytoplasm. The waves have no fixed shape, can reverse their direction of propagation and can fuse or divide. Actin waves separate two phases of the plasma membrane that are distinguished by their lipid composition. The area circumscribed by a wave resembles in its phosphoinositide content the interior of a phagocytic cup, leading us to explore the possibility that actin waves are in-plane phagocytic structures generated without the localized stimulus of an attached particle. Consistent with this view, wave-forming cells were found to exhibit a high propensity for taking up particles. Cells fed rod-shaped particles produced elongated phagocytic cups that displayed a zonal pattern that reflected in detail the actin and lipid pattern of free-running actin waves. Neutrophils and macrophages are known to spread on surfaces decorated with immune complexes, a process that has been interpreted as "frustrated" phagocytosis. We suggest that actin waves enable a phagocyte to scan a surface for particles that might be engulfed.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Dictyostelium/citologia , Fagocitose/fisiologia , Citoesqueleto de Actina/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Adesão Celular/fisiologia , Membrana Celular/fisiologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/fisiologia , Modelos Biológicos , Miosina Tipo II/genética , Fosfatos de Fosfatidilinositol/metabolismo , Pinocitose/fisiologia , Saccharomyces cerevisiae , Tiazolidinas/farmacologia
7.
Proc Natl Acad Sci U S A ; 105(46): 17978-81, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19004777

RESUMO

Bacteria have evolved numerous mechanisms for cell-cell communication, many of which have important consequences for human health. Among these is conjugation, the direct transfer of DNA from one cell to another. For gram-negative bacteria, conjugation requires thin, flexible filaments (conjugative pili) that are elaborated by DNA donor cells. The structure, function, and especially the dynamics of conjugative pili are poorly understood. Here, we have applied live-cell imaging to characterize the dynamics of F-pili (conjugative pili encoded by the F plasmid of Escherichia coli). We establish that F-pili normally undergo cycles of extension and retraction in the absence of any obvious triggering event, such as contact with a recipient cell. When made, such contacts are able to survive the shear forces felt by bacteria in liquid media. Our data emphasize the role of F-pilus flexibility both in efficiently sampling a large volume surrounding donor cells in liquid culture and in establishing and maintaining cell-cell contact. Additionally and unexpectedly, we infer that extension and retraction are accompanied by rotation about the long axis of the filament.


Assuntos
Escherichia coli/citologia , Fator F/metabolismo , Fímbrias Bacterianas/metabolismo , Imageamento Tridimensional , Corantes Fluorescentes/metabolismo , Coloração e Rotulagem
8.
Eur J Cell Biol ; 85(9-10): 1001-10, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16782228

RESUMO

Dictyostelium cells are professional phagocytes that avidly consume bacteria, their natural prey. Fluorescent probes have allowed us to monitor the initial steps in this process in living cells. Using probes that bind to F-actin, we have visualized the assembly and disassembly of actin filaments responsible for extending the phagocytic cup to engulf a bacterium, and, after the phagosome has sealed, the assembly of new actin filaments to propel the phagosome away from the site of uptake. Using bacteria expressing fluorescent proteins that are susceptible to proteolysis, we have monitored the loss of that fluorescent signal and the staining of the bacterial contents with neutral red, indicating permeabilization of the bacterial cell wall and acidification of the cytoplasm. We find that acidification occurs during a period of microtubule-based transport that promotes fusion of the phagosome with microtubule-associated acidic endosomes. Actin-powered phagosome internalization, transport of the phagosome along microtubules, proteolysis and acidification of bacterial contents, all typically occur within the first six or seven minutes after formation of the phagosome. Thus, tracking individual phagosomes has revealed that early steps in phagosome maturation occur much more rapidly than had been inferred from previous population studies.


Assuntos
Bactérias/metabolismo , Dictyostelium/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Bactérias/citologia , Dictyostelium/citologia , Microtúbulos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
Microbiology (Reading) ; 151(Pt 11): 3541-3548, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16272377

RESUMO

Conjugative pili are extracellular filaments elaborated by Gram-negative bacteria expressing certain type IV secretion systems. They are required at the earliest stages of conjugal DNA transfer to establish specific and secure cell-cell contacts. Conjugative pili also serve as adsorption organelles for both RNA and DNA bacteriophages. Beyond these facts, the structure, formation and function of these filaments are poorly understood. This paper describes a rapid, quantitative assay for F-pili encoded by the F plasmid type IV secretion system. The assay is based on the specific lateral adsorption of icosahedral RNA bacteriophage R17 by F-pili. Bacteriophage particles conjugated with a fluorescent dye, Alexa 488, and bound to F-pili defined filaments visible by immunofluorescence microscopy. F-pili attached to F+ cells and free F-pili were both visible by this method. For quantification, cell-bound bacteriophage were separated from free bacteriophage particles by sedimentation and released by suspending cell pellets in 0.1 % SDS. Fluorescence in cell-free supernatant fractions was measured by fluorometry. The authors present a characterization of this assay and its application to F-pilus formation by cells carrying mutations in the gene for the F-pilus subunit F-pilin. Each mutation introduced a cysteine, which F-pilin normally lacks, at a different position in its primary structure. Cysteine residues in the N-terminal domain I abolished filament formation as measured by fluorescent R17 binding. This was confirmed by measurements of DNA donor activity and filamentous DNA bacteriophage infection. With one exception (G53C), cysteines elsewhere in the F-pilin primary structure did not abolish filament formation, although some mutations differentially affected F-pilus functions.


Assuntos
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator F/genética , Proteínas de Fímbrias/metabolismo , Microscopia de Fluorescência/métodos , Fagos RNA/metabolismo , Sequência de Aminoácidos , Conjugação Genética , Cisteína , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Corantes Fluorescentes/metabolismo , Dados de Sequência Molecular , Mutação , Fagos RNA/fisiologia
10.
Eur J Cell Biol ; 83(6): 289-96, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15511086

RESUMO

The structure of the contractile vacuole complex of Dictyostelium discoideum has long been a subject of controversy. A model that originated from the work of John Heuser and colleagues described this osmoregulatory organelle as an interconnected array of tubules and cisternae the membranes of which are densely populated with vacuolar proton pumps. A conflicting model described this same organelle as bipartite, consisting of a pump-rich spongiome and a pump-free bladder, the latter membranes being identified by their alkaline phosphatase activity. In the present study we have employed an antiserum specific for Dictyostelium alkaline phosphatase to examine the distribution of this enzyme in vegetative cells. The antiserum labels puncta, probably vesicles, that lie at or near the plasma membrane and are sometimes, but only rarely, enriched near contractile vacuole membranes. We conclude that alkaline phosphatase is not a suitable marker for contractile vacuole membranes. We discuss these results in relation to the two models of contractile vacuole structure and suggest that all data are consistent with the first model.


Assuntos
Fosfatase Alcalina/metabolismo , Dictyostelium/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia , Animais , Dictyostelium/citologia , Imuno-Histoquímica , Bombas de Próton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...